	NAME			DATE	PERI	OD _
6-1	P	ractice	(Average)			

The Counting Principle

State whether the events are independent or dependent.

- 1. choosing an ice cream flavor and choosing a topping for the ice cream independent
- 2. choosing an offensive player of the game and a defensive player of the game in a professional football game independent
- 3. From 15 entries in an art contest, a camp counselor chooses first, second, and third place winners. **dependent**
- 4. Jillian is selecting two more courses for her block schedule next semester. She must select one of three morning history classes and one of two afternoon math classes. **independent**

Solve each problem.

- 5. A briefcase lock has 3 rotating cylinders, each containing 10 digits. How many numerical codes are possible? 1000
- 6. A golf club manufacturer makes irons with 7 different shaft lengths, 3 different grips, 5 different lies, and 2 different club head materials. How many different combinations are offered? 210
- 7. There are five different routes that a commuter can take from her home to the office. In how many ways can she make a round trip if she uses a different route coming than going? 20
- 8. In how many ways can the four call letters of a radio station be arranged if the first letter must be W or K and no letters repeat? 27,600
- 9. How many 7-digit phone numbers can be formed if the first digit cannot be 0 or 1, and any digit can be repeated? 8,000,000
- 10. How many 7-digit phone numbers can be formed if the first digit cannot be 0, and any digit can be repeated? 9,000,000
- 11. How many 7-digit phone numbers can be formed if the first digit cannot be 0 or 1, and if no digit can be repeated? 483,840
- 12. How many 7-digit phone numbers can be formed if the first digit cannot be 0, and if no digit can be repeated? 544,320
- 13. How many 6-character passwords can be formed if the first character is a digit and the remaining 5 characters are letters that can be repeated? 118,813,760
- 14. How many 6-character passwords can be formed if the first and last characters are digits and the remaining characters are letters? Assume that any character can be repeated. 45,697,600

Permutations and Combinations

Evaluate each expression.

1. P(8, 6) 20,160

2. P(9, 7) 181,440

3. P(3, 3) 6

4. P(4, 3) 24

5. P(4, 1) 4

6. P(7, 2) 42

7. C(8, 2) 28

8. C(11, 3) **165**

9. *C*(20, 18) **190**

10. C(9, 9) 1

11. C(3, 1) 3

12. C(9, 3) · C(6, 2) **1260**

Determine whether each situation involves a *permutation* or a *combination*. Then find the number of possibilities.

- 13. selecting a 4-person bobsled team from a group of 9 athletes combination; 126
- 14. an arrangement of the letters in the word *Canada* permutation; 120
- 15. arranging 4 charms on a bracelet that has a clasp, a front, and a back permutation; 24
- 16. selecting 3 desserts from 10 desserts that are displayed on a dessert cart in a restaurant combination; 120
- 17. an arrangement of the letters in the word annually permutation; 5040
- 18. forming a 2-person sales team from a group of 12 salespeople combination; 66
- 19. making 5-sided polygons by choosing any 5 of 11 points located on a circle to be the vertices combination; 462
- 20. seating 5 men and 5 women alternately in a row, beginning with a woman permutation; 14,400
- 21. STUDENT GROUPS Farmington High is planning its academic festival. All math classes will send 2 representatives to compete in the math bowl. How many different groups of students can be chosen from a class of 16 students? 120
- 22. PHOTOGRAPHY A photographer is taking pictures of a bride and groom and their 6 attendants. If she takes photographs of 3 people in a group, how many different groups can she photograph? 56
- 23. AIRLINES An airline is hiring 5 flight attendants. If 8 people apply for the job, how many different groups of 5 attendants can the airline hire? 56
- 24. SUBSCRIPTIONS A school librarian would like to buy subscriptions to 7 new magazines. Her budget, however, will allow her to buy only 4 new subscriptions. How many different groups of 4 magazines can she choose from the 7 magazines? 35

Skills Practice

Probability

Ahmed is posting 2 photographs on his website. He has narrowed his choices to 4 landscape photographs and 3 portraits. If he chooses the two photographs at random, find the probability of each selection.

1.
$$P(2 \text{ portrait}) \frac{1}{7}$$

2.
$$P(2 \text{ landscape}) \frac{2}{7}$$
 3. $P(1 \text{ of each}) \frac{4}{7}$

3.
$$P(1 \text{ of each}) \frac{4}{7}$$

The Carubas have a collection of 28 video movies, including 12 westerns and 16 science fiction. Elise selects 3 of the movies at random to bring to a sleep-over at her friend's house. Find the probability of each selection.

4.
$$P(3 \text{ westerns}) \frac{55}{819}$$

5.
$$P(3 \text{ science fiction}) \frac{20}{117}$$

6.
$$P(1 \text{ western and } 2 \text{ science fiction}) \frac{40}{91}$$

6.
$$P(1 \text{ western and } 2 \text{ science fiction}) $\frac{40}{91}$ **7.** $P(2 \text{ westerns and } 1 \text{ science fiction}) $\frac{88}{273}$$$$

9.
$$P(2 \text{ science fiction and } 2 \text{ westerns})$$

For Exercises 10-13, use the chart that shows the class and gender statistics for the students taking an Algebra 1 or Algebra 2 class at La Mesa High School.

If a student taking Algebra 1 or Algebra 2 is selected at random, find each probability. Express as decimals rounded to the nearest thousandth.

- 10. P(sophomore/female) 0.208
- 11. P(junior/male) 0.143
- **12.** *P*(freshman/male) **0.136**
- 13. P(freshman/female) 0.145

Class/Gender	Number	
Freshman/Male	95	
Freshman/Female	101	
Sophomore/Male	154	
Sophomore/Female	145	
Junior/Male	100	
Junior/Female	102	

Find the odds of an event occurring, given the probability of the event.

14.
$$\frac{5}{8}$$
 5:3

15.
$$\frac{2}{7}$$
 2:5

16.
$$\frac{3}{5}$$
 3:2

17.
$$\frac{1}{10}$$
 1:9

18.
$$\frac{5}{6}$$
 5:1

19.
$$\frac{5}{12}$$
 5:7

Find the probability of an event occurring, given the odds of the event.

20. 2:1
$$\frac{2}{3}$$

21. 8:9
$$\frac{8}{17}$$

23. 1:9
$$\frac{1}{10}$$

24. 2:7
$$\frac{2}{9}$$

25. 5:9
$$\frac{5}{14}$$