Inverse Relations and Functions

а. 5.

Explore Inverse Functions

Online Activity Use graphing technology to complete the Explore.

Q INQUIRY For what values of *n* will $f(x) = x^n$ have an inverse that is also a function?

Learn Inverse Relations and Functions

Two relations are **inverse relations** if one relation contains elements of the form (a, b) when the other relation contains the elements of the form (b, a).

Two functions f and g are **inverse functions** if and only if both of their compositions are the identity function.

Key Concepts • Inverse Functions		
Words: If f and f^{-1} are inverses, then $f(a) = b$ if and only if $f^{-1}(b) = b$		
Example: Let $f(x) = x - 5$ and represent its inverse as $f^{-1}(x) = x + 1$		
Evaluate f(7).	Evaluate <i>f</i> ⁻¹ (2).	
f(x) = x - 5	$f^{-1}(x) = x + 5$	
f(7) = 7 - 5 or 2	$f^{-1}(2) = 2 + 5 \text{ or } 7$	

Not all functions have an inverse function. If a function fails the horizontal line test, you can restrict the domain of the function to make the inverse a function. Choose a portion of the domain on which the function is one-to-one. There may be more than one possible domain.

Example 1 Find an Inverse Relation

GEOMETRY The vertices of $\triangle ABC$ can be represented by the relation {(2, 4), (-3, 2), (4, 1)}. Find the inverse of the relation. Graph both the original relation and its inverse.

Step 1 Graph the relation.

Graph the ordered pairs and connect the points to form a triangle.

Today's Goals

- Find inverses of relations.
- Verify that two relations are inverses by using compositions.

Today's Vocabulary inverse relations

inverse functions

🕞 Think About It!

Write a function that does not pass the horizontal line test.

```
Sample answer: f(x) = x^2
```

Go Online You can complete an Extra Example online.

Lesson 6-2 • Inverse Relations and Functions 307

Your Notes

Think About It! Describe the graph of the inverse relation.

Sample answer: It is a reflection in the line y = x.

Study Tip

Inverses If $f^{-1}(x)$ is the inverse of f(x), the graph of $f^{-1}(x)$ will be a reflection of the graph of f(x) in the line y = x.

Go Online

You can learn how to graph a relation and its inverse on a graphing calculator by watching the video online.

Step 2 Find the inverse.

Step 3 Graph the inverse.

To find the inverse, exchange the coordinates of the ordered pairs. $\{(4, 2), (2, -3), (1, 4)\}$

Example 2 Inverse Functions

Find the inverse of f(x) = 3x + 2. Then graph the function and its inverse.

Step 1 Rewrite the function.

Rewrite the function as an equation relating x and y.

 $f(x) = 3x + 2 \rightarrow y = 3x + 2$

Step 2 Exchange x and y.

Exchange x and y in the equation.

x = 3 y + 2

Step 3 Solve for y.

$$x = 3y + 2$$
$$x - 2 = 3y$$
$$\frac{x - 2}{3} = y$$

Step 4 Replace *y* with $f^{-1}(x)$.

Replace y with $f^{-1}(x)$ in the equation.

 $y = \frac{x-2}{3} \rightarrow \frac{f^{-1}(x)}{3} = \frac{x-2}{3}$

The inverse of f(x) = 3x + 2 is $f^{-1}(x) = \frac{x-2}{3}$.

Step 5 Graph f(x) and $f^{-1}(x)$.

0

Copyright © McGraw-Hill Educatior

Examine $f(x) = -\frac{1}{2}x + 1$. Part A Find the inverse of $f(x) = -\frac{1}{2}x + 1$. $f^{-1}(x) = -\frac{2x+2}{2}$ Part B Graph $f(x) = -\frac{1}{2}x + 1$ and its inverse.

308 Module 6 • Inverse and Radical Functions

THIS MATERIAL IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

Example 3 Inverses with Restricted Domains

Examine $f(x) = x^2 + 2x + 4$.

Part A Find the inverse of f(x).

$f(x) = x^2 + 2x + 4$	Original function
$\mathbf{y} = x^2 + 2x + 4$	Replace $f(x)$ with y .
$\underline{\mathbf{x}} = \underline{\mathbf{y}}^2 + 2\underline{\mathbf{y}} + 4$	Exchange <i>x</i> and <i>y</i> .
$x - 4 = y^2 + 2y$	Subtract 4 from each side.
$x - 4 + 1 = y^2 + 2y + 1$	Complete the square.
$x - 3 = (\underline{y + 1})^2$	Simplify.
$\pm\sqrt{x-3} = y+1$	Take the square root of each side.
$-1 \pm \sqrt{x-3} = y$	Subtract 1 from each side.
$f^{-1}(x) = -1 \pm \sqrt{x-3}$	Replace y with $f^{-1}(x)$.

Part B If necessary, restrict the domain of the inverse so that it is a function.

Because f(x) fails the horizontal line test, $f^{-1}(x)$ is not a function. Find the restricted domain of f(x) so that $f^{-1}(x)$ will be a function. Look for a portion of the graph that is one-to-one. If the domain of f(x) is restricted to $[-1, \infty)$ then the inverse is $f^{-1}(x) = -1 + \sqrt{x-3}$.

If the domain of f(x) is restricted to $(-\infty, -1]$, then the inverse is $f^{-1}(x) = -1 - \sqrt{x-3}$.

Example 4 Interpret Inverse Functions

TEMPERATURE A formula for converting a temperature in degrees Fahrenheit to degrees Celsius is $T(x) = \frac{5}{9}(x - 32)$.

Find the inverse of T(x), and describe its meaning.

$$T(x) = \frac{5}{9}(x - 32)$$
Original function
$$\frac{y}{2} = \frac{5}{9}(x - 32)$$
Replace $T(x)$ with y .
$$\frac{x}{5} = \frac{5}{9}(\frac{y}{5} - 32)$$
Exchange x and y .
$$\frac{9x}{5} = \frac{y - 32}{5}$$
Multiply each side by $\frac{9}{5}$.
$$\frac{+32}{5} = y$$
Add 32 to each side.
$$T^{-1}(x) = \frac{9x}{5} + 32$$
Replace y with $T^{-1}(x)$.

 $T^{-1}(x) =$ can be used to convert a temperature in degrees Celsius to degrees Fahrenheit.

Go Online You can complete an Extra Example online.

Watch Out!

Inverse Functions f^{-1} is read *f* inverse or the inverse of *f*. Note that -1 is not an exponent.

Go Online to see Part B of the example on using the graph of T(x) and $T^{-1}(x)$.

Think About It!

Find the domain of T(x) and its inverse. Explain your reasoning.

Sample answer:

Algebraically, the domain of both T(x) and $T^{-1}(x)$ are all real numbers because temperatures can be positive and negative and do not have to be integer values.

Lesson 6-2 • Inverse Relations and Functions 309

 $\frac{9x}{5}$

Copyright © McGraw-Hill Education

🕞 Think About It!

If j(x) and k(x) are inverses, find $[k \circ j](x)$.

Watch Out!

Compositions of Functions Be sure to check both $[f \circ g](x)$ and $[g \circ f](x)$ to verify that functions are inverses. By definition, both compositions must result in the identity function.

Go Online to see another example on verifying inverse functions.

Calk About It!

Find the domain of the inverse, and describe its meaning in the context of the situation.

Sample answer: The inverse represents the radius of a cylinder with a height of 5 inches in terms of its volume. The domain is all positive real numbers because the radius cannot be negative.

Learn Verifying Inverses

Key Concept • Verifying Inverse Functions

Words: Two functions *f* and *g* are inverse functions if and only if both of their compositions are the identity function.

Symbols: f(x) and g(x) are inverses if and only if $[f \circ g](x) = x$ and $[g \circ f](x) = x$.

Example 5 Use Compositions to Verify Inverses

Determine whether $h(x) = \sqrt{x + 13}$ and $k(x) = (x - 13)^2$ are inverse functions.

Find $[h \circ k](x)$. $[h \circ k](x) = h[k(x)]$ Composition of functions $= h[\frac{(x - 13)^2}{2}]$ Substitute. $= \sqrt{(x - 13)^2 + 13}$ Substitute again. $= \sqrt{x^2 - 26x + 169} + 13$ Distribute. $= \sqrt{x^2 - 26x + 182}$ Simplify.

Because $[h \circ k](x)$ is not the identity function, h(x) and k(x) are <u>not inverses</u>.

Check

Determine whether $f(x) = \frac{x}{9} + \frac{4}{3}$ and g(x) = 9x + 12 are inverses. Explain your reasoning. No; $[f \circ g](x) = x + \frac{8}{3}$ and $[g \circ f](x) = x + 24$.

Example 6 Verify Inverse Functions

GEOMETRY The formula for the volume of a cylinder with a height of

5 inches is $V = 5\pi r^2$. Determine whether $r = \sqrt{\frac{V}{5\pi}}$ is the inverse of the original function.

Copyright © McGraw-Hill Educatio

310 Module 6 • Inverse and Radical Functions