Operations on Functions

Fxplore Adding Functions

W Online Activity Use graphing technology to complete the Explore.
@ INQUIRY Do you think that the graph of $f(x)+g(x)$ will be more or less steep than the graphs of $f(x)$ and $g(x)$?

Today's Goals

- Find sums, differences, products, and quotients of functions.
- Find compositions of functions.

Today's Vocabulary composition of functions

Learn Operations on Functions

Key Concept • Operations on Functions

Operation	Definition	Example: Let $f(x)$$=3 x$ and $g(x)=\mathbf{2 x - 4 .}$.

Division

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0 \quad\left(\frac{f}{g}\right)(x)=\frac{3 x}{2 x-4}, x \neq 2
$$

To graph the sum or difference of functions, graph each function separately. Then add or subtract the corresponding functional values.

Example 1 Add and Subtract Functions

Given $f(x)=-x^{2}+3 x+1$ and $g(x)=2 x^{2}-5$, find each function.
a. $(f+g)(x)$

$$
\begin{aligned}
(f+g)(x) & =f(x)+\underline{g(x)} & & \text { Addition of functions } \\
& =\left(-x^{2}+3 x+1\right)+\left(2 x^{2}-5\right) & & f(x)=-x^{2}+3 x+1 \\
& =-x^{2}+3 x+1+2 x^{2}-5 & & \text { and } g(x)=2 x^{2}-5 \\
& =x^{2}+3 x-4 & & \text { Add. } \\
& & & \text { Simplify. }
\end{aligned}
$$

(continued on the next page)
Go Online You can complete an Extra Example online.

Study Tip
Degree If the degree of $f(x)$ is m and the degree of $g(x)$ is n, then the degrees of $(f+g)(x)$ and $(f-g)(x)$ can be at most m or n, whichever is greater.

Go Online to see Example 3.
b. $(f-g)(x)$

$$
\begin{aligned}
(f-g)(x) & =f(x)-\underline{g(x)} \\
& =\left(\underline{-x^{2}+3 x+1}\right)-\left(2 x^{2}-5\right) \\
& =-x^{2}+3 x+1-2 x^{2}+5 \\
& =-3 x^{2}+3 x+6
\end{aligned}
$$

Subtraction of functions
$f(x)=-x^{2}+3 x+1$ and $g(x)=2 x^{2}-5$

Subtract.
Simplify.

Example 2 Multiply and Divide Functions

Given $f(x)=4 x^{2}-2 x+3$ and $g(x)=-x+5$, find each function.
a. $(f \cdot g)(x)$

$$
\begin{aligned}
(f \cdot g)(x) & =f(x) \cdot g(x) & & \begin{array}{l}
\text { Multiplication of } \\
\text { functions }
\end{array} \\
& =\left(4 x^{2}-2 x+3\right)(-x+5) & & f(x)=4 x^{2}-2 x+3 \\
& =-4 x^{3}+\underline{20} x^{2}+\underline{2} x^{2}-10 x-3 x+15 & & \text { Distributive Property } \\
& =-4 x^{3}+\underline{22} x^{2}-\underline{13} x+15 & & \text { Simplify. }
\end{aligned}
$$

b. $\left(\frac{f}{g}\right)(x)$

$$
\begin{array}{rlrl}
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} & & \text { Division of functions } \\
& =\frac{4 x^{2}-2 x+3}{-x+5}, x \neq 5 & & f(x)=4 x^{2}-2 x+3 \text { and } \\
& g(x)=-x+5
\end{array}
$$

Check

Given $f(x)=-x^{2}+1$ and $g(x)=x+1$, find each function.

$$
(f \cdot g)(x)=-x^{3}-x^{2}+x+1 \quad\left(\frac{f}{g}\right)(x)=-x+1
$$

Learn Compositions of Functions

Key Concept • Composition of Functions

Suppose f and g are functions such that the range of g is a subset of the domain of f. Then the composition function $f \circ g$ can be described by $[f \circ g](x)=f[g(x)]$.

Go Online You can complete an Extra Example online.

Example 4 Compose Functions by Using Ordered Pairs

Given f and g, find $[f \circ g](x)$ and $[g \circ f](x)$. State the domain and range for each.
$f=\{(1,12),(10,11),(0,13),(9,7)\} \quad g=\{(4,1),(5,0),(13,9),(12,10)\}$

Part A Find $[f \circ g](x)$ and $[g \circ f](x)$.

To find $f \circ g$, evaluate $g(x)$ first then use the range to evaluate $f(x)$.
$f[g(4)]=f(1)$ or $12 \quad g(4)=1$
$f[g(5)]=f(0)$ or $13 \quad g(5)=0$
$f[g(13)]=f(9)$ or $7 \quad g(13)=9$
$f[g(12)]=f(10)$ or $11 \quad g(12)=10$

To find $g \circ f$, evaluate $f(x)$ first then use the range to evaluate $g(x)$.

$$
\begin{array}{ll}
g[f(1)]=g(12) \text { or } 10 & f(1)=12 \\
g[f(10)]=g(11) & f(10)=11 \\
g[f(0)]=g(13) \text { or } \underline{9} & f(0)=13 \\
g[f(9)]=g(7) & f(9)=7
\end{array}
$$

Because 11 and 7 are not in the domain of $g, g \circ f$ is undefined for $x=11$ and $x=7$. So, $g \circ f=\{(1,10),(0,9)\}$.

Part B State the domain and range.
$[f \circ g](x):$ The domain is the x-coordinates of the composed function, so $D=\{4,5,12,13\}$. The range is the y-coordinates of the composed function, so $R=\{7,11,12,13\}$.
$[g \circ f](x):$ The domain is the x-coordinates of the composed function, so $\mathrm{D}=\{\underline{0}, 1\}$. The range is the y-coordinates of the composed function, so $R=\{9,10\}$.

Example 5 Compose Functions

Given $f(x)=2 x-5$ and $g(x)=3 x$, find $[f \circ g](x)$ and $[g \circ f](x)$. State the domain and range for each.

Part A Find $[f \circ g](x)$ and $[g \circ f](x)$.

$$
\left.\left.\begin{array}{rlrl}
{[f \circ g](x)} & =f[g(x)] & \begin{array}{c}
\text { Composition } \\
\text { of functions }
\end{array} & {[g \circ f](x)}
\end{array}\right)=g[f(x)]\right] \text { (} \begin{array}{rlrl}
{[g(2 x-5)} \\
& =f(3 x) & & \\
& =2(3 x)-5 & \text { Substitutute again. } & \\
& =6 x-5 & \text { Simplify. } &
\end{array}
$$

Part B State the domain and range.

Because $[f \circ g](x)$ and $[g \circ f](x)$ are both linear functions with nonzero slopes, $D=\{$ all real numbers $\}$ and $R=\{$ all real numbers $\}$ for both functions.
(1) Go Online You can complete an Extra Example online.

Check

Given $f(x)=-x+1$ and $g(x)=2 x^{3}-x$, find $[f \circ g](x)$ and $[g \circ f](x)$. State the domain and range for each.
$[f \circ g](x)=-2 x^{3}+x+1$
$[g \circ f](x)=\underline{-2 x^{3}+6 x^{2}-5 x+1}$

Domain of $[f \circ g](x)$: all real numbers Domain of $[g \circ f](x)$: all real numbers
Range of $[f \circ g](x)$: all real numbers Range of $[g \circ f](x)$: all real numbers

Watch Out!

Order Remember that, for two functions $f(x)$ and $g(x),[f \circ g](x)$ is not always equal to $[g \circ f](x)$. Given that the studios take their cut after the tickets have been sold, consider how that affects the order of $t(x)$ and $k(x)$.

Go Online
You can complete an Extra Example online.

Q Apply Example 6 Use Composition of Functions

BOX OFFICE A movie theater charges $\$ 8.50$ for each of the x tickets sold. The manager wants to determine how much the movie theater gets to keep of the ticket sales if they have to give the studios 75% of the money earned on ticket sales $t(x)$. If the amount they keep of each ticket sale is $k(x)$, which composition represents the total amount of money the theater gets to keep?

1 What is the task?

Describe the task in your own words. Then list any questions that you may have. How can you find answers to your questions? Sample answer: I need to write functions for $t(x)$ and $k(x)$ and use them to create a composition that represents the money that the theater keeps. If the studios get 75%, what does the theater get to keep?
Should the composition be $[k \circ t](x)$ or $[t \circ k](x)$?
2 How will you approach the task? What have you learned that you can use to help you complete the task?
Sample answer: First, I will determine functions for $t(x)$ and $k(x)$. Then, I will determine the order of the composition and simplify it.
twill apply what I have learned in previous examples to complete the task.

3 What is your solution?

Use your strategy to solve the problem.
What function represents the money earned on ticket sales, $t(x)$? $t(x)=8.50 x$
What function represents the amount of money the theater keeps from each ticket sale, $k(x) ? k(x)=0.25 x$

Because the theater uses the total earnings to determine the amount they keep from the ticket sales, what composition should be used to represent the situation? $[k \circ t]=2.125 x$

4 How can you know that your solution is reasonable?
(C) Write About It! Write an argument that can be used to defend your solution.

Sample answer: If the theater sells 1000 tickets in a weekend, they will earn $t(1000)$, or $\$ 8500$. The theater will keep 25% of $\$ 8500$, which is $k(8500)=\$ 2125$. This is the same value as $[k \circ t](1000)$.

