

Learn Graphing Power Functions

A **power function** is any function of the form $f(x) = ax^n$ where aand n are nonzero real numbers. For a power function, a is the **leading coefficient** and *n* is the **degree**, which is the value of the exponent. A power function with positive integer *n* is called a **monomial function**.

Key Concept • End Behavior of a Monomial Function

Degree: even

Leading Coefficient: positive

End Behavior:

As
$$x \to -\infty$$
, $f(x) \to \infty$.
As $x \to \infty$, $f(x) \to \infty$.

Domain: all real numbers Range: all real numbers ≥ 0

Degree: even

Leading Coefficient: negative

End Behavior:

As
$$x \to -\infty$$
, $f(x) \to -\infty$.
As $x \to \infty$, $f(x) \to -\infty$.

Domain: all real numbers Range: all real numbers ≤ 0 Degree: odd Leading Coefficient: positive

End Behavior:

As
$$x \to -\infty$$
, $f(x) \to -\infty$.
As $x \to \infty$, $f(x) \to \infty$.

Domain: all real numbers Range: all real numbers

Degree: odd

Leading Coefficient: negative

End Behavior:

As
$$x \to -\infty$$
, $f(x) \to \infty$.
As $x \to \infty$, $f(x) \to -\infty$.

Domain: all real numbers Range: all real numbers

Today's Goals

- Graph and analyze power functions.
- Graph and analyze polynomial functions.

Today's Vocabulary

power function leading coefficient degree monomial function polynomial in one variable

standard form of a polynomial

degree of a polynomial polynomial function

quartic function

quintic function

Talk About It!

Is $f(x) = \sqrt{x}$ a power function? a monomial function? Explain your reasoning.

Sample answer: f(x) = \sqrt{x} is a power function because it is equivalent

to
$$f(x) = x^{\frac{1}{2}}$$
, and $\frac{1}{2}$ is a

nonzero constant real number. It is not a monomial function

because $\frac{1}{2}$ is not a

positive integer.

Key Concept • Zeros of Even and Odd Degree Functions

Odd-degree functions will always have at least one real zero. Even-degree functions may have any number of real zeros or no real zeros at all.

Example 1 End Behavior and Degree of a Monomial Function

Describe the end behavior of $f(x) = -2x^3$ using the leading coefficient and degree, and state the domain and range.

The leading coefficient of f(x) is $\frac{-2}{}$, which is negative.

The degree is $\frac{3}{}$, which is odd.

Because the leading coefficient is negative and the degree is odd, the end behavior is that as $x \to -\infty$, $f(x) \to \underline{\hspace{1cm}}$ and as $x \to \infty$, $f(x) \to \underline{\hspace{1cm}}$.

Because the leading coefficient is negative and the degree is odd, the domain and range are <u>all real numbers</u>.

Check

Describe the end behavior, domain, and range of $f(x) = -10x^6$.

end behavior: As $x \to -\infty$, $f(x) \to \underline{-\infty}$ and as $x \to \infty$, $f(x) \to \underline{-\infty}$.

domain: <u>all real numbers</u> range: <u>all real numbers ≤ 0 </u>

Go Online

You can watch a video to see how to graph power functions on a TI-84.

Think About It!

Interpret the domain and range given the context of the situation.

Sample answer: Because
it is unreasonable to
have negative flow rate
or negative pressure
from a garden hose,
both the domain and
range are constricted to
values greater than or
equal to zero.

Example 2 Graph a Power Function by Using a Table

PRESSURE For water to flow through a garden hose at a certain rate in gallons per minute (gpm), it needs to have a specific pressure in pounds per square inch (psi). Through testing and measurement, a company that produces garden hoses determines that the pressure P given the flow rate F is defined by $P(F) = \frac{3}{2}F^2$. Graph the function P(F), and state the domain and range.

Steps 1 and 2 Find a and n. Then state the domain and range.

For
$$P(F) = \frac{3}{2}F^2$$
, $a = \frac{\frac{3}{2}}{2}$, and $n = \frac{2}{2}$.

Because a is positive and n is even, the domain is <u>all real numbers</u> and the range is all real numbers ≥ 0 .

Steps 3-5 Create a table of values and graph the ordered pairs.

F	$\frac{3}{2}F^{2}$	P(F)
-2	$\frac{3}{2}(-2)^2$	6
-1	$\frac{\frac{3}{2}(-2)^2}{\frac{3}{2}(-1)^2}$	1.5
0	$\frac{3}{2}(0)^2$	0
1	$\frac{3}{2}(1)^2$	1.5
2	$\frac{3}{2}(2)^2$	6

Go Online You can complete an Extra Example online.

You can learn how to graph a polynomial function by watching the video online.

Learn Graphing Polynomial Functions

A **polynomial in one variable** is an expression of the form $a_n x^n +$ $a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0$, where $a_n \neq 0$, a_{n-1} , a_1 , and a_0 are real numbers, and n is a nonnegative integer. Because the terms are written in order from greatest to least degree, this polynomial is written in **standard form**. The **degree of a polynomial** is *n* and the leading coefficient is a_n .

A polynomial function is a continuous function that can be described by a polynomial equation in one variable. You have learned about constant, linear, quadratic, and cubic functions. A quartic function is a fourth-degree function. A quintic function is a fifth-degree function. The degree tells you the maximum number of times that the graph of a polynomial function intersects the x-axis.

Example 3 Degrees and Leading Coefficients

State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.

a.
$$2x^4 - 3x^3 - 4x^2 - 5x + 6a$$

b.
$$7x^3 - 2$$

c.
$$4x^2 - 2xy + 8y^2$$

This is not a polynomial in one variable. There are two variables, x and y.

d.
$$x^5 + 12x^4 - 3x^3 + 2x^2 + 8x + 4$$
 degree: 5 leading coefficient: 1

Check

Select the degree and leading coefficient of $11x^3 + 5x^2 - 7x - \frac{6}{x}$.

A. degree: 3, leading coefficient: 11

B. degree: 11, leading coefficient: 3

C. This is not a polynomial in one variable. There are two variables, x and y.

D. This is not a polynomial in one variable. The term $\frac{6}{x}$ has the variable with an exponent less than 0.

Go Online You can complete an Extra Example online.

Think About It!

If a polynomial function has a leading coefficient of 4, can you determine its end behavior? Explain your reasoning.

No; sample answer: I would need to know the degree of the function to determine its end behavior.

Think About It!

Jamison says the leading coefficient of $4x^2 - 3 + 2x^3 - x$ is 4. Do you agree or disagree? Justify your reasoning.

Disagree; sample answer: The term with the greatest degree is $2x^3$, and the coefficient of that term is 2.

Watch Out!

Leading Coefficients

If the term with the greatest degree has no coefficient shown, as in part d, the leading coefficient is 1.

Think About It!

What values of x make sense in the context of the situation? Justify your reasoning.

Sample answer: Because x is a percent, only values between 0 and 1, inclusively, make sense in the context of the situation.

Study Tip

Axes Labels Notice that the x-axis is measuring the percent of the radius, not the actual length of the radius.

Example 4 Evaluate and Graph a Polynomial Function

SUN The density of the Sun, in grams per centimeter cubed, expressed as a percent of the distance from the core of the Sun to its surface can be modeled by the function $f(x) = 519x^4 - 1630x^3 + 1600x^3 + 1600x$ $1844x^2 + 155$, where x represents the percent as a decimal. At the core x = 0, and at the surface x = 1.

Part A Evaluate the function.

Find the core density of the Sun at a radius 60% of the way to the surface.

Because we need to find the core density at a radius 60% of the way to the surface, x = 0.6. So, replace x with 0.6 and simplify.

$$f(x) = 519x^4 - 1630x^3 + 1844x^2 - 889x + 155$$

$$= 519(0.6)^4 - 1630(0.6)^3 + 1844(0.6)^2 - 889(0.6) + 155$$

$$= 67.2624 - 352.08 + 663.84 - 533.4 + 155$$

$$= \frac{0.6224}{cm^3}$$

Part B Graph the function.

Sketch a graph of the function.

Substitute values of x to create a table of values. Then plot the points, and connect them with a smooth curve.

x	f(x)
0.1	82.9619
0.2	38.7504
0.3	14.4539
0.4	3.4064
0.5	0.1875
0.7	1.7819
0.8	1.9824
0.9	0.7859

Check

CARDIOLOGY To help predict heart attacks, doctors can inject a concentration of dye in a vein near the heart to measure the cardiac output in patients. In a normal heart, the change in the concentration 1.79x, where x is the time in seconds.

Part A Find the concentration of dye after 5 seconds.

$$f(5) = 21.375$$

Go Online You can complete an Extra Example online.

Example 5 Zeros of a Polynomial Function

Use the graph to state the number of real zeros of the function.

The real zeros occur at x = -2, 1, and 4, so there are <u>three</u> real zeros.

Check

Use the graph to state the number of real zeros of the function.

The function has ___4 real zero(s).

Go Online You can complete an Extra Example online.

Study Tip

Zeros The real zeros occur at values of x where f(x) = 0, or where the polynomial intersects the x-axis. Recall that odd-degree polynomial functions have at least one real zero and even-degree polynomial functions have any number of real zeros. So, the minimum number of times that an odddegree polynomial intersects the x-axis is 1, and the minimum number of times that an even-degree polynomial intersects the x-axis is 0.

Think About It!

Find the domain and range of f(x). Does g(x)have the same domain and range? Explain.

The domain and range of f(x) are both all real numbers. No; sample answer: The domain of q(x) is also all real numbers, but the range is all real numbers greater than or equal to the minimum, which is between y = -2 and v = -3.

Study Tip

Zeros The zeros of a polynomial function are the x-coordinates of the points at which the graph intersects the x-axis.

Example 6 Compare Polynomial Functions

Examine $f(x) = x^3 + 2x^2 - 3x$ and g(x)shown in the graph.

Part A Graph f(x).

Substitute values for x to create a table of values. Then plot the points, and connect them with a smooth curve.

X	f(x)
-3	0
-2	6
- 1	4
0	0
1	0
2	10
3	36

Part B Analyze the extrema.

Which function has the greater relative maximum?

f(x) has a relative maximum at approximately y = 6, and g(x) has a relative maximum between y = 2 and y = 3. So, f(x) has the greater relative maximum.

Part C Analyze the key features.

Compare the zeros, x- and y-intercepts, and end behavior of f(x) and g(x).

zeros:

g(x): The graph appears to intersect the x-axis at $\frac{-1}{}$, $\frac{-0.5}{}$, $\frac{1}{}$ 2

intercepts:

$$f(x)$$
: x-intercepts: -3 , 0 , 1 ; y-intercept: 0

$$g(x)$$
: x -intercepts: -1 , -0.5 , 1 , 2 ; y -intercept: 2

end behavior:

$$f(x)$$
: As $x \to -\infty$, $f(x) \to \underline{-\infty}$, and as $x \to \infty$, $f(x) \to \underline{-\infty}$.

$$g(x)$$
: As $x \to -\infty$, $g(x) \to \underline{\infty}$, and as $x \to \infty$, $g(x) \to \underline{\infty}$.

Pause and Reflect

Did you struggle with anything in this lesson? If so, how did you deal with it?

See students' observations.

Go Online You can complete an Extra Example online.