# Graphing Linear Functions and Inequalities

### **Learn** Graphing Linear Functions

The graph of a function represents all ordered pairs that are true for the function. You can use various methods to graph a linear function.

# **Example 1** Graph by Using a Table

Graph x + 3y - 6 = 0 by using a table.

Solve the equation for y. Then make a table and complete the graph.

$$x + 3y - 6 = 0$$
$$y = -\frac{1}{3}x + 2$$

| Original | function |
|----------|----------|
| Solvo    |          |

| x  | $-\frac{1}{3}x + 2$               | У   |
|----|-----------------------------------|-----|
| -6 | $-\frac{1}{3}(-6)+2$              | 4   |
| -3 | $-\frac{1}{3}\frac{(-3)}{(-3)}+2$ | 3   |
| 0  | $-\frac{1}{3}(0) + 2$             | _ 2 |
| 3  | $-\frac{1}{3}(3) + 2$             | _1_ |
| 6  | $-\frac{1}{3}$ (6) + 2            | 0   |



### Check

Graph 6x + 2y = 10 by using a table.

| х  | у  |
|----|----|
| -1 | 8  |
| 0  | 5  |
| 1  | 2  |
| 3  | -4 |



# **Example 2** Graph by Using Intercepts

Graph 3x - 2y = -12 by using the x- and y-intercepts.

To find the *x*-intercept, let y = 0. To find the *y*-intercept, let x = 0.

$$3x - 2y = -12$$
  
 $3x - 2(_0) = -12$ 

Original function

$$3x - 2y = -12$$

$$x = -4$$

Replace with 0. Simplify.

$$3(_{0}) - 2y = -12$$
  
 $y = _{6}$ 

(continued on the next page)

Go Online You can complete an Extra Example online.

- Graph linear functions.
- Graph linear inequalities in two variables.

Today's Vocabulary

linear inequality boundary

closed half-plane open half-plane

constraint

# Go Online

You can watch a video to see how to graph linear functions.

### Study Tip

Recall that slope is the ratio of the change in the *y*-coordinates (rise) to the corresponding change in the x-coordinates (run) as you move from one point to another along a line.

#### Think About It!

Explain why -6, -3, 0, 3. and 6 were selected for the x-values in the table.

Sample answer: Because x is multiplied by  $-\frac{1}{3}$ , using x-values that are multiples of 3 will result in integers, which are easier to plot on the coordinate plane.



How can you check that the graph is correct?

Sample answer: Find another point on the line, such as (-2, 3) and substitute the values of *x* and *y* into the function.

$$3(-2) - 2(3) \stackrel{?}{=} -12$$
 $-6 - 6 \stackrel{?}{=} -12$ 
 $-12 = -12$  True

The *x*-intercept is -4, and the *y*-intercept is 6. This means that the graph passes through (-4, 0) and (0, 6).

Plot the two intercepts.

Draw a line through the points.



# **Example 3** Graph by Using the Slope and *y*-intercept

Graph  $y = \frac{3}{2}x - 4$  by using m and b.

Follow these steps.

• Begin by identifying the slope m and y-intercept b of the function.

$$m = \frac{3}{2}$$

• Use the value of b to plot the y-intercept (0, -4).



- Use the slope of the line  $m = \frac{3}{2}$  to plot more points. From the *y*-intercept, move up  $\frac{3}{2}$  units and  $\frac{\text{right}}{2}$  units. Plot a point at  $(\frac{2}{2}, \frac{-1}{2})$ .
- From the point (2, -1), move <u>up</u> 3 units and right <u>2</u> units. Plot a point at (<u>4</u>, <u>2</u>).
- Draw a line through the points.

# **Explore** Shading Graphs of Linear Inequalities

Online Activity Use graphing technology to complete the Explore.



# Explore Shading Graphs of Life at mequalities

# **Learn** Graphing Linear Inequalities in Two Variables

The graph of a **linear inequality** is a half-plane with a boundary that is a straight line. The half-plane is shaded to indicate that all points contained in the region are solutions of the inequality. A **boundary** is a line or curve that separates the coordinate plane into two half-planes.



Go Online You can complete an Extra Example online.

Go Online

variables.

You can watch a video

to see how to graph a

linear inequality in two

A constraint is a condition that a solution must satisfy. Each solution of the inequality represents a viable, or possible, option that satisfies the constraint.

# **Example 4** Graph an Inequality with an Open Half-Plane

Graph 12 - 4y > x.

Step 1 Graph the boundary.

$$12 - 4y > x$$

$$-4y > x - 12$$

$$y < -\frac{1}{4}x + 3$$

Original inequality

Subtract 12 from each side.

Divide each side by -4, and reverse the inequality symbol.

The boundary of the graph is  $y = -\frac{1}{4}x + 3$ . Because the inequality symbol is >, the boundary is dashed



#### Step 2 Use a test point and shade.

Test (0, 0).

$$12 - 4y > x$$
 Original inequality

$$12 - 4(\underline{0}) \stackrel{?}{>} \underline{0}$$
 Substitute.

Because (0, 0) is a solution of the inequality, shade the half-plane that contains the test point.

**Check:** Check by selecting another point in the shaded region to test.

# **Example 5** Graph an Inequality with a Closed Half-Plane

Graph  $9 + 3y \le 8x$ .

Step 1 Graph the boundary.

Solve for *y* in terms of *x* and graph the related function.

$$9 + 3y \le 8x$$
 Original inequality
$$3y \le 8x - 9$$
 Subtract 9 from each si
$$y \le \frac{8}{3}x - 3$$
 Divide each side by 3.

Original inequality Subtract 9 from each side.

The related equation of  $y \le \frac{8}{3}x - 3$  is  $y = \frac{8}{3}x - 3$ , and the boundary is solid.

(continued on the next page)

#### **Above or Below**

Usually the shaded half-plane of a linear inequality is said to be above or below the line of the related equation. However, if the equation of the boundary is x = c for some constant c, then the function is a vertical line. In this case, the shading is considered to be to the left or to the right of the boundary.



#### Talk About It!

Can a linear inequality ever be a function? Explain your reasoning.

No; sample answer: for any value of x, there are infinitely many values of y in the solution set of a linear inequality. Therefore, a linear inequality cannot be a function.



#### Think About It!

Why should you not test a point that is on the boundary?

Sample answer: Testing a point on the boundary does not indicate whether you have properly shaded the solution set. It will only indicate whether the boundary should be included.

Is (3, 5) a solution of the inequality? Explain.

Yes; sample answer: (3, 5) is on the solid boundary, so it is included in the solution.

# Go Online

You can watch a video to see how to graph an inequality using a graphing calculator.

# Go Online

You can complete an Extra Example online.

#### Step 2 Use a test point and shade.

Select a test point, such as (0, 0).

$$9 + 3v \le 8x$$

Original inequality

$$\frac{9}{4} + 3(\frac{0}{2}) \stackrel{?}{\leq} 8(\frac{0}{2})$$

$$(x, y) = (0, 0).$$

Shade the side of the graph that does not contain the test point.



# Apply Example 6 Linear Inequalities

GRADES Malik's algebra teacher determines semester grades by finding the sum of 70% of a student's test grade average and 30% of a student's homework grade average. If Malik wants a semester grade of 90% or better, write and graph the inequality that represents the constraints for Malik's test grade x and homework grade y.

#### 1 What is the task?

Describe the task in your own words. Then list any questions that you may have. How can you find answers to your questions?

Sample answer: Use the description to write the inequality. Find points on the boundary and use a test point to create the graph.

# 2 How will you approach the task? What have you learned that you can use to help you complete the task?

Sample answer: Write and graph an inequality to represent the constraints on Malik's grades. How do the test and homework grades relate to the semester grade?

#### 3 What is your solution?

Use your strategy to solve the problem. What inequality represents the constraints for Malik's test and homework grades? Use the grid to graph the inequality.

$$0.7x + 0.3y \ge 0.9$$

Which of these are viable solutions for Malik's test and homework grades?



- 88% test, 100% homework
- 95% test, 70% homework
- 90% test, 90% homework
- 95% test, 80% homework
- 90% test, 80% homework
- 100% test, 70% homework

# 4 How can you know that your solution is reasonable?

Write About It! Write an argument that can be used to defend your solution. Sample answer: I can select a point in the shaded region, such as (0.95, 0.8) and test it in the inequality.