6.1 Operations on Functions · Form A

Answerkey

All work must be completed on a separate sheet of paper, in a clear and organized manner.

Examples 1 and 2

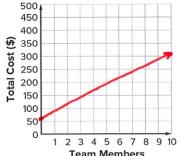
Find (f+g)(x), (f-g)(x), $(f\cdot g)(x)$, and $(\frac{f}{g})(x)$ for each f(x) and g(x).

1.
$$f(x) = x - 1$$

2.
$$f(x) = x^2$$

3.
$$f(x) = 3x^2 - 4$$

$$a(x) = 5x - 2$$


$$g(x) = x - 5$$

$$g(x) = x^2 - 8x + 4$$

g(x) = 5x - 2		y(x) - x - 3	y(x) = x = 6x + 4
(f+g)(x)	ax-3	x2 + x -5	4x2-8x
(f-g)(x)	-4×+1	x2 -x+5	2x2+8x-8
(f*g)(x)	5x2-7x+2	$\chi^3 - 5\chi^2$	3x4-24x3 +8x2+32x-16
$(\frac{f}{g})(x)$	X-1 5x-2 x ≠ 2/5	$\frac{\chi^2}{\chi^2} \chi \neq 5$	3x2-4 X2-8x+4 X ≠ 4±2√3

Example 3

- 4. BASEBALL A coach is ordering custom practice T-shirts and game jerseys for each of the team members. The coach orders T-shirts from a local shop that charges \$7.50 for each, plus a \$35 initial printer fee. The cost of the T-shirts is modeled by t(x) = 7.5x + 35, where x is the number of team members. He orders jerseys online, which cost \$18 each with \$20 shipping. The cost of the jerseys is modeled by j(x) = 18x + 20. Define and graph the function that represents the total cost of the T-shirts and jerseys. $(\ell + j)(x) = 25.5 x + 55$

Examples 4

For each pair of functions, find $f \circ g$ and $g \circ f$, if they exist. State the domain and range for each.

5.
$$f = \{(-7, 0), (4, 5), (8, 12), (-3, 6)\}$$

 $g = \{(6, 8), (-12, -5), (0, 5), (5, 1)\}$

6.
$$f = \{(-4, -14), (0, -6), (-6, -18), (2, -2)\}$$

 $g = \{(-6, 1), (-18, 13), (-14, 9), (-2, -3)\}$

Examples 5

Find $[f \circ g](x)$ and $[g \circ f](x)$, if they exist. State the domain and range for each.

7.
$$f(x) = -3x$$

$$g(x) = -x + 8$$

8.
$$f(x) = 2x^2 - x + 1$$

$$g(x) = 4x + 3$$

Example 6

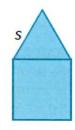
REASONING A sporting goods store is offering a 20% discount on shoes. Mariana also has a \$5 off coupon that can be applied to her purchase. She is planning to buy a pair of shoes that originally costs \$89. Will the final price be lower if the discount is applied before the coupon or if the coupon is applied before the discount? Justify your response.

a. Identify and write a new function to represent total cost.

Mixed Exercises

10. CONSTRUCT ARGUMENTS Is $[f \circ g](x)$ always equal to $[g \circ f](x)$ for two functions f(x) and g(x)? Justify your conclusions. Provide a counterexample if needed.

If f(x) = 3x, g(x) = x + 4, and $h(x) = x^2 - 1$, find each value.


11.
$$g[h(0)]$$

323

16.
$$f[g(7)]$$

17.
$$[g \circ (f \circ h)](-1)$$

36. AREA Valeria wants to know the area of a figure made by joining an equilateral triangle and square along an edge. The function $f(s) = \frac{\sqrt{3}}{4} s^2$ gives the area of an equilateral triangle with side s. The function $g(s) = s^2$ gives the area of a square with side s. What function h(s) gives the area of the figure as a function of its side length s?

- **38. REASONING**-The National Center for Education Statistics reports data showing that since 2006, college enrollment for men in thousands can be modeled by f(x) = 389x + 7500, where x represents the number of years since 2006. Similarly, enrollment for women can be modeled by g(x) = 480x + 10,075. Write a function for (f + g)(x) and interpret what it represents.
- **41.** CREATE Write two functions f(x) and g(x) such that $(f \circ g)(4) = 0$.
- **43.** PERSEVERE Given $f(x) = \sqrt{x^3}$ and $g(x) = \sqrt{x^6}$, determine each domain. **a.** g(x) g(x) **b.** f(x) f(x)