Solving Polynomial Equations Algebraically

Learn Solving Polynomial Equations by Factoring

Like quadratics, some polynomials of higher degrees can be factored. A polynomial that cannot be written as a product of two polynomials with integral coefficients is called a prime polynomial. Like a prime real number, the only factors of a prime polynomial are 1 and itself.

Similar to quadratics, some cubic polynomials can be factored by using polynomial identities.

Key Concept • Sum and Difference of Cubes

Factoring Technique	General Case
Sum of Two Cubes	$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
Difference of Two Cubes	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Polynomials can be factored by using a variety of methods, the most common of which are summarized in the table below. When factoring a polynomial, always look for a common factor first to simplify the expression. Then, determine whether the resulting polynomial factors can be factored using one or more methods.

Concept Summary • Factoring Techniques

Number of Terms	Factoring Technique	General Case
any number	Greatest Common Factor (GCF)	$2a^4b^3 + 6ab = 2ab(a^3b^2 + 6)$
Difference of Two Squares two Sum of Two Cubes Difference of Two Cubes		$a^2 - b^2 = (a + b)(a - b)$
	$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	
		$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
three	Perfect Square	$a^2 + 2ab + b^2 = (a + b)^2$
	Trinomials	$a^2 - 2ab + b^2 = (a - b)^2$
	General Trinomials	$acx^2 + (ad + bc)x + bd$
		= (ax + b)(cx + d)
four or more		ax + bx + ay + by
	Grouping	= x(a+b) + y(a+b)
		= (a+b)(x+y)

Today's Goals

- Solve polynomial equations by factoring.
- Solve polynomial equations by writing them in quadratic form and factoring.

Today's Vocabulary prime polynomial quadratic form

Think About It! Mateo says that you could use the sum of two cubes to factor $x^{15} + v^{15}$? Is he correct? Why or why not?

correctly?

Your Notes 🦠	Example 1 Factor Sums and Differences of Cubes		
	Factor each polynomial. If the polynomial write <i>prime</i> .	cannot be factored,	
	a. $8x^3 + 125y^{12}$		
3 pm gr - Amu, revenues de La	The GCF of the terms is 1, but $8x^3$ and $125y^{12}$ are both perfect cubes. Factor the sum of two cubes.		
P. Oper of A speciment in the Association and Association (ASSOCIATION OF THE SPECIMENT ASSOCIATION OF THE A	$8x^3 + 125y^{12}$	Original expression	
	$=(2x)^3+(_)^3$	$(2x)^3 = 8x^3; (5y^4)^3 = 125y^{12}$	
PSpecips are not because an efficient and control of the control o	$= (2x + 5y^{4})[(2x)^{2} - (2x)(5y^{4}) + (5y^{4})^{2}]$	Sum of two cubes	
A MENTER OF THE STATE OF THE ST	$= (2x + 5y^{4})(\underline{\hspace{1cm}} - 10xy^{4} + \underline{\hspace{1cm}})$	Simplify.	
	b. 54x ⁵ – 128x ² y ³		
	$54x^5 - 128x^2y^3$	Original expression	
$ = \frac{1}{2} \left(\frac{1}{2$	$=2x^2(27x^3-64y^3)$	Factor out the GCF.	
	$=2x^{2}[(_{)}^{3}-(_{)}^{3}]$	$(3x)^3 = 27x^3$; $(4y)^3 = 64y^3$	
	$= 2x^2(3x - 4y)[(3x)^2 + 3x(4y) + (4y)^2]$	Difference of two cubes	
	$= 2x^2(3x - 4y)(9x^2 + \underline{\hspace{1cm}} + \underline{\hspace{1cm}})$	Simplify.	
encount tens to construct an COS SECTION AND IN TRANSPORTER AND THE SECTION AN		And an annual control of the second of the s	

Example 2 Factor by Grouping

Factor $14ax^2 - 16by + 20cy + 28bx^2 - 35cx^2 - 8ay$. If the polynomial cannot be factored, write *prime*.

$$14ax^2 - 16by + 20cy + 28bx^2 - 35cx^2 - 8ay$$
 Original expression
= $(14ax^2 + 28bx^2 - 35cx^2) + (-8ay - 16by + 20cy)$ Group to find a GCF.
= ____(2a + 4b - 5c) - ____(2a + 4b - 5c) Factor out the GCF.
= $(7x^2 - 4y)($ ____ + _____) Distributive Property

Example 3 Combine Cubes and Squares

Factor $64x^6 - y^6$. If the polynomial cannot be factored, write *prime*.

This polynomial could be considered the difference of two squares or the difference of two cubes. The difference of two squares should always be done before the difference of two cubes for easy factoring.

$$64x^{6} - y^{6}$$
 Original expression
$$= (__)^{2} - (__)^{2}$$
 $(8x^{3})^{2} = 64x^{6}$; $(y^{3})^{2} = y^{6}$

$$= (8x^{3} + y^{3})(8x^{3} - y^{3})$$
 Difference of squares
$$= [(__)^{3} + y^{3}][(__)^{3} - y^{3}]$$
 $(2x)^{3} = 8x^{3}$

$$= (2x + __)(4x^{2} - __ + y^{2})(2x - __)$$
 Sum and difference of cubes $(4x^{2} + __ + y^{2})$

Go Online You can complete an Extra Example online.

Study Tip

Grouping When

common values.

grouping 6 or more

terms, group the terms that have the *most*

$$4x^3 + 12x^2 - 9x - 27 = 0$$

Original equation

$$(4x^3 + 12x^2) + (-9x - 27) = 0$$

Group to find a GCF.

$$(x + 3) - (x + 3) = 0$$

Factor out the GCFs.

$$(4x^2 - 9)(x + 3) = 0$$

Distributive Property

$$(\underline{} + \underline{})(2x - 3)(x + 3) = 0$$

Difference of squares

$$2x + 3 = 0$$
 or $2x - 3 = 0$ or $x + 3 = 0$

Zero Product Property

$$x =$$
_____, $x =$ _____, $x =$ ______

The solutions of the equation are ____, ___, and ____.

Check

Solve
$$x^3 + 4x^2 - 25x - 100 = 0$$
.

$$x =$$
_____, ____, and _____

Example 5 Write and Solve a Polynomial Equation

by Factoring

GEOMETRY In the figure, the small cube is one fourth the length of the larger cube. If the volume of the figure is 1701 cubic centimeters. what are the dimensions of the cubes?

$$x^3 = 1701$$
 Subtract.

$$x^3 =$$
 _____ Divide each side by 63.

$$x^3 - 27 = 0$$

Subtract 27 from each side.

$$(x-3)(\underline{\hspace{1cm}})=0$$

Difference of cubes

$$x =$$
____ or $x = \frac{-3 \pm 3i\sqrt{3}}{2}$ So

Solve.

Since ____ is the only real solution, the lengths of the cubes are ____ cm and ____ cm.

Some polynomials in x can be rewritten in quadratic form.

Key Concept • Quadratic Form

An expression in quadratic form can be written as $au^2 + bu + c$ for any numbers a, b, and c, $a \neq 0$, where u is some expression in x. The expression $au^2 + bu + c$ is called the quadratic form of the original expression.

Think About It!

The following expressions can be written in quadratic form. What do you notice about the terms with variables in the original expressions?

$$2x^{10} + x^5 + 9$$

$$12x^6 - 20x^3 + 6$$

$$15x^2 + 9x^4 - 1$$

Talk About It!

Example 6 Write Expressions in Quadratic Form

Write each expression in quadratic form, if possible.

a.
$$4x^{20} + 6x^{10} + 15$$

Examine the terms with variables to choose the expression equal to u.

$$4x^{20} + 6x^{10} + 15 = (___)^2 + ___(2x^{10}) + ___ (2x^{10})^2 = 4x^{20}$$

b.
$$18x^4 + 180x^8 - 28$$

If the polynomial is not already in standard form, rewrite it. Then examine the terms with variables to choose the expression equal to u.

$$18x^4 + 180x^8 - 28 = 180x^8 + 18x^4 - 28$$
 Standard form of a polynomial
$$= \underline{\qquad} (6x^4)^2 + \underline{\qquad} (6x^4) - \underline{\qquad} (6x^4)^2 = 36x^8$$

c.
$$9x^6 - 4x^2 - 12$$

Because $x^6 \neq (x^2)^2$, the expression ______ be written in quadratic form.

Check

What is the quadratic form of $10x^4 + 100x^8 - 9$?

Example 7 Solve Equations in Quadratic Form

Solve
$$8x^4 + 10x^2 - 12 = 0$$
.

of each side.

Check

What are the solutions of $16x^4 + 24x^2 - 40 = 0$?

The solutions are $\frac{\sqrt{3}}{2}$, $-\frac{\sqrt{3}}{2}$, $i\sqrt{2}$, and $-i\sqrt{2}$.

x = _____

Go Online You can complete an Extra Example online.