4.1 Polynomial Functions - Form A

xample 1

Describe the end behavior of each function using the leading coefficient and degree, and state the domain and range.

1.
$$f(x) = -2x^3$$

2.
$$f(x) = \frac{3}{4}x^6$$

1. $f(x) = -2x^3$ EB: $\chi \Rightarrow \omega$, $f(x) \Rightarrow \infty$, $\chi \Rightarrow -\infty$, $f(x) \Rightarrow \infty$ LC: -2 Deg: 3 D: $(-\infty, \infty)$ R: $(-\omega, \infty)$ 2. $f(x) = \frac{3}{4}x^6$ EB: $\chi \Rightarrow \omega$, $f(x) \Rightarrow \infty$, $\chi \Rightarrow -\infty$, $f(x) \Rightarrow \infty$ Deg: $(-\infty, \infty)$ R: $(-\infty, \infty)$ R: $(-\infty, \infty)$

Example 2

3. MACHINE EFFICIENCY company uses the function $f(x) = x^3 + 3x^2 - 18x - 40$ to model the change in efficiency of a machine based on its position x. Graph the function (on attached graph paper) and state the domain and range (-6, 0) (-6, 0)

Example 3

State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.

4.
$$(2x-1)(4x^2+3)$$
 D: 3 ; C. 8

5.
$$18 - 3y + 5y^2 - y^5 + 7y^6$$
 D:6; LC 7

6.
$$2r-r^2+\frac{1}{r^2}$$
 not a poly is one variable.

Negative exponent (variable in denominator)

Example 4

Example 4

- **7.DRILLING** The volume of a drill bit can be estimated by the formula for a cone, $V = \frac{1}{2}\pi h r^2$, where h is the height of the bit and r is its radius. Substituting $\frac{\sqrt{3}}{2}r$ for h, the volume of the drill bit can be estimated by $V = \frac{\sqrt{3}}{9} \pi r^3$.
 - a. What is the volume of a drill bit with a radius of 3 centimeters? 37 /3
 - b. Sketch a graph (on attached graph paper) of the function.

Example 5

Use the graph to state the number of real zeros of the function.

10.

11. Examine the graph of f(x) and g(x) shown in the table.

x	-5	-3	0	1.5	3	
g(x)	7.5	0	-9	-15	0	

- **a.** Which function has the greater relative maximum? f(x)
- **b.** Compare the zeros, x- and y-intercepts, and end behavior of f(x) and g(x).

(x) = -3, 3 g(x) = -3, 3 g(x) = -3, 3 Polynomial Functions f(x) = 9, g(x) = -9emd behav.

Mixed Exercises

Describe the end behavior, state the degree and leading coefficient of each polynomial. If the unction is not a polynomial, explain why.

12.
$$g(x) = 2x^5 + 6x^4$$

13.
$$h(x) = 9x^6 - 5x^7 + 3x$$

12.
$$g(x) = 2x^5 + 6x^4$$

EB: $x \to \infty$, $g(x) \to \infty$, $x \to -\infty$, $g(x) \to \infty$
LC: $g(x) = 2x^5 + 6x^4$
13. $h(x) = 9x^6 - 5x^7 + 3x^2$
EB: $x \to \infty$, $h(x) \to \infty$, $h(x) \to \infty$
LC: $g(x) = 2x^5 + 6x^4$
13. $h(x) = 9x^6 - 5x^7 + 3x^2$
EB: $x \to \infty$, $h(x) \to \infty$, $h(x) \to \infty$

14.
$$f(x) = (5-2x)(4+3x)$$

15.
$$g(x) = 3x^7 - 4x^4 + \frac{3}{x^4}$$

14.
$$f(x) = (5-2x)(4+3x)$$

15. $g(x) = 3x^7 - 4x^4 + \frac{3}{x}$

EB: $\chi \to \infty$, $f(x) \to -\infty$; $\chi \to -\infty$, $f(x) \to \text{EB}$: not a poly in one variable

LC: $-\omega$ Deg: 2

LC: Deg:

- 16. CONSTRUCT ARGUMENTS Explain why a polynomial function with an odd degree must have at least one real zero. and behavior on one end goes to as & onthe other goes to -cs, so it what cross x-axis at least once.
- **17. COMPARING** Compare the end behavior of the functions $g(x) = -3x^4 + 15x^3 12x^2 + 3x + 20$ and $h(x) = -3x^4 16x 1$. Explain your reasoning.

18. ANALYZE Compare the functions g(x) and f(x). Determine which function has the potential for more real zeros and the degree of each function.

$q(x) = x^4 + x^3$	$-13x^2 + x + 4$

x	-24	-18	-12	-6	0	6	12	18	24
f(x)	-8	-1	3	-2	4	7	-1	-8	5

19. CREATE Sketch the graph of an even-degree polynomial with 7 real zeros, one of which is a double zero, and the leading coefficient is negative.

3)

4)

5)

6)

7)

