Extrema and End Behavior • Form A

Examples 1 and 2

Identify and estimate the x- and y-values of the extrema. Round to the nearest tenth if necessary.

Examples 3-5

Describe the end behavior of each function.

8.

10. ROLLERCOASTER The graph shows the height of a rollercoaster in terms of its distance away from the starting point. Describe the end behavior and interpret the end behavior in the context of the situation.

Mixed Exercises

Identify and estimate the x- and y-values of the extrema. Round to the nearest tenth if necessary. Then use the graphs to describe the end behavior of each function.

12.

16.

18. BUBBLES The volume of a soap bubble can be estimated by the formula $V = 4\pi r^2$, where *r* is its radius. The graph shows the function of the bubble's volume. Describe the end behavior of the graph.

Identify and estimate the x- and y-values of the extrema. Round to the nearest tenth if necessary. Then use the graphs to describe the end behavior of each function.

20.

800

USE ESTIMATION Use a graphing calculator to estimate the *x*-coordinates at which any extrema occur for each function. Round to the nearest hundredth.

22.
$$f(x) = x^3 + 3x^2 - 6x - 6$$

24.
$$f(x) = -2x^4 + 5x^3 - 4x^2 + 3x - 7$$

26. CONSTRUCT ARGUMENTS Sheena says that in the graph of f(x) shown below, the graph has relative maxima at B and G, and a relative minimum at A. Is she correct? Explain.

- **28. ENGINEERING** Several engineering students built a catapult for a class project. They tested the catapult by launching a watermelon and modeled the height *h* of the watermelon in feet over time *t* in seconds.
 - **a.** Considering the context of the problem, what is an appropriate domain for h(t)? Explain your reasoning.
 - **b.** Use the graph of h(t) to find the maximum height of the watermelon. When does the watermelon reach the maximum height? Explain your reasoning.

30. The table shows the values of a function. Use the table to describe the end behavior of the function.

X	у
-1000	-1,001,000,000
-100	-1,010,000
-10	-1100
-1	-2
1	0
10	900
100	990,000
1000	999,000,000

- **31.** WRITE Describe what the end behavior of a graph is and how it is determined.
- **33. ANALYZE** A catalyst is used to increase the rate of a chemical reaction. The reaction rate, or the speed at which the reaction is occurring, is given by $R(x) = \frac{0.5x}{x+10}$, where x is the concentration of the catalyst solution in milligrams of solute per liter. What does the end behavior of the graph mean in the context of this experiment?

35. FIND THE ERROR Joshua states that the end behavior of the graph is: as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to +\infty$, $f(x) \to +\infty$. What error did he make?

